Рейтинговые книги
Читем онлайн Расшифрованная жизнь. Мой геном, моя жизнь - Крейг Вентер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 26 27 28 29 30 31 32 33 34 ... 107

Мы с Фризом поспорили о сравнительных достоинствах секвенирования белка и секвенирования ДНК, и я проиграл. Я был в полном отчаянии, но через несколько дней вспомнил про специальный счет на 250 тысяч долларов от Министерства обороны для идентификации химического оружия и заявил Фризу о своей решимости опробовать новое устройство, воспользовавшись этими деньгами. Моя решительность произвела на него впечатление, и заказ на секвенатор был отправлен в ABI.

И в феврале 1987 года новое устройство для секвенирования ДНК доставили по адресу «НИЗ, корпус 36». В этом контейнере находилось мое будущее. Я носился с этим прибором, как с ребенком. В лаборатории было мало места, и я велел поставить секвенатор в свой кабинет. Моей сотруднице Жанин Гокейн не хватало уверенности в собственных силах, но я верил в ее способности и попросил помочь запустить новый прибор.

Самой важной его частью была электрофорезная камера с вертикальным гелем для секвенирования, размером с блокнот. В геле было 16 дорожек для одновременного запуска 16 образцов. (Требовалось еще прогнать 4 стандарта, чтобы убедиться в правильном функционировании устройства, оно могло справиться лишь с дюжиной образцов.) В нижней части геля находился сканер, который двигался взад-вперед, передавая сигналы от флуоресцентных красителей в компьютер. Один проход занимал 16 часов и выдавал данные, на получение которых старым методом ушла бы неделя.

Потратив еще несколько недель на исправление технических неполадок, мы начали получать прекрасные результаты, до двух сотен пар оснований генетического кода с каждого образца ДНК. Проблема состояла лишь в том, что программное обеспечение прибора было примитивным и ненадежным. Позднее наши программисты потратили немало времени на усовершенствование компьютера.

На ключевом этапе процесса секвенирования мы использовали ДНК-полимеразу. Это фермент, который копирует ДНК с помощью небольшого фрагмента ДНК – праймера для секвенирования. Чтобы понять, как работают полимераза и праймер, представим процесс ремонта поврежденных железнодорожных путей, где на определенном участке удален один рельс. Железнодорожные пути – это двойная спираль ДНК, а ремонтная бригада – ДНК-полимераза, и вот она начинает укладывать новые пути с того места, где было два нетронутых рельса. ДНК-полимеразу можно обмануть и заставить начать с определенной точки на ДНК с помощью короткого кусочка синтетической ДНК (праймера), который связывается с определенными основаниями для создания короткого отрезка двойной спирали ДНК.

Еще будучи стажером, я научился у Ната Каплана проверять чистоту и количество реагентов, не доверяя гарантиям поставщиков. Запуская прибор, я каждый раз измерял количество ДНК и секвенирующего праймера, чтобы получить правильное соотношение между реагентами и продуктами химической реакции. Такое внимание к деталям оказалось чрезвычайно важным: представители ABI заявили, что до нас никто так не интерпретировал результаты секвенирования, да и вообще не получал приличные данные. Большинство их клиентов были настолько разочарованы, что вернули секвенаторы ABI. А мы достигли существенного успеха с помощью этого устройства и сумели использовать его для секвенирования двух рецепторных генов из сердца крысы – генов бета-адренергетического рецептора, изменяющего активность сердцебиения в ответ на введение адреналина, и мускаринового рецептора, который замедляет частоту сердечных сокращений под влиянием блуждающего нерва. Мы быстро секвенировали оба гена, а для сравнения выполнили секвенирование некоторого количества генов вручную методом Сенгера. Осенью 1987 года мы опубликовали результаты нашей работы в PNAS, и они стали первыми данными, полученными методом автоматизированного секвенирования ДНК – тем самым методом, о котором я прочитал в журнале Nature всего год назад{17}. Направление моих исследований изменилось бесповоротно и навсегда.

После клонирования, секвенирования и выделения адреналинового рецептора мы приступили к определению его структуры и функций методами молекулярной биологии. Каким образом он распознает адреналин? Что происходит после связывания рецептора с адреналином? Что на самом деле делает молекула рецептора? Что контролирует синтез и распад рецептора? Какова молекулярная структура рецептора в мембранах наших клеток?

Основой решения этих задач стало установление трехмерной структуры рецепторного белка в клеточной мембране. Пространственная структура белка не однозначно определяется последовательностью ДНК, и установление этой структуры остается одной из великих задач биологии. Очень важно выяснить, как одна из огромного числа молекул, беспорядочно перемещающихся в наших клетках, приобретает правильную форму и правильный заряд для присоединения к рецептору и вызывает жизненно важные реакции – например, учащение сокращений сердца или замедление роста клеток.

Все занимавшиеся исследованием структуры молекулы адреналинового рецептора непременно отмечали ее ключевую особенность: наличие 7 участков аминокислот, согласно компьютерному моделированию, располагающихся в форме штопора или альфа-спирали. Эти спирали чаще всего встроены в липидные мембраны клеток. Напомним, что рецепторные молекулы являются основным средством связи между внешней поверхностью клетки и ее содержимым, – это много лет назад показали мои эксперименты со стеклянными бусинами. Адреналиновый рецептор встроен в мембрану так, что эти семь «пальцев» образуют нечто вроде кармана для захвата адреналина и таким образом изменяют остальную часть молекулы рецептора, «объявляя» о появлении химического мессенджера. Среда вне липидной мембраны представляет собой водный раствор, поэтому мы полагали, что соединенные с адреналином аминокислоты рецептора должны быть гидрофильными, а также отрицательно заряженными, так как часть молекулы адреналина несет положительный заряд. И мы действительно нашли несколько аминокислот с такими свойствами. Другие аминокислоты последовательности рецепторного белка, например пролин, обычно играют важную роль в построении его структуры, образуя своеобразные изгибы.

К тому времени нам удалось выяснить, что происходит при изменении конфигурации рецепторного белка. Один из методов молекулярной биологии, так называемый «сайт-направленный мутагенез», или «белковая инженерия», позволил нам провести некоторые хитроумные эксперименты. Изменяя код гена рецептора, можно изменить последовательность аминокислот, то есть саму структуру белка. Поэтому мы могли бы проанализировать работу этой некогда неуловимой молекулы, если бы выяснили, как работает измененный рецепторный белок – например, по-прежнему ли он связан с адреналином и «нравится» ли другим препаратам с ним связываться? И если да, то действует ли рецептор так же, как при взаимодействии с адреналином?

Должен признаться, что в душе я – старомодный биохимик. Мне нравится думать не только о мутациях, которые изменяют структуру белков, но и о том, как эти изменения отражаются на биологическом поведении организма. Очень многие генетики довольствуются лишь тем, что обнаруживают связь между кусочком ДНК и каким-то признаком. Для меня это похоже на впечатление от встречи с кем-то, лично знакомым с иной знаменитостью: «У меня есть друг, который знаком с Мадонной!». Мне этого мало. Я хочу знать гораздо больше, и не только о Мадонне. Я хочу понять, что это за биологический рецептор, который вдохновляет ту же Мадонну? И всех остальных людей, если уж на то пошло!

В результате мы изменили десятки аминокислот в рецепторных белках, и в 1988 году опубликовали две важные статьи об аминокислотах, влияющих на способ связи и активирования рецептора молекулами адреналина. Но, на удивление, эти молекулы не оказывали никакого влияния на бета-блокаторы типа пропранолола, которые также связывались с рецепторами. Из этих экспериментальных данных был сделан единственный вывод – точки на рецепторном белке, связывающиеся с активаторами вроде адреналина (так называемых «агонистов»), отличаются от точек на рецепторных белках, связывающихся с их блокаторами вроде пропранолола (так называемых «антагонистов»). Наше упрощенное представление о работе рецепторов теперь следовало пересмотреть. Всегда считалось, что гормоны работают по принципу «ключ к замку», где замок – рецептор, а антагонисты – просто неподходящие к нему ключи. Теперь оказывалось, что они могут действовать на какую-то другую деталь замка, но так, что замок все равно не срабатывает.

Выдвигать подобные гипотезы было бы гораздо легче, если бы мы имели модель адреналинового рецептора. Я вспомнил, как в начале моей работы в лаборатории Каплана его сотрудница Сьюзен Тейлор определила трехмерную структуру фермента лактатдегидрогеназы на основе данных рентгеновской кристаллографии. Затем была создана модель белка (1,2 метра в длину, в ширину и в высоту), которая наглядно показывала, как в клетках растений и животных этот фермент катализирует взаимные биохимические превращения пирувата и лактата в основном метаболизме. Я хотел сделать подобную модель адреналинового рецептора. Но чтобы «сфотографировать» рецепторный белок, он нужен в кристаллической форме, а для этого требуются его граммовые количества – примерно в миллион раз больше, чем мы в то время располагали. Изучив литературу, я обнаружил, что для массового производства белков успешно используются дрожжи, и нанял химика Дика Маккомби, чтобы он получил нужное для рентгеновской съемки количество белка.

1 ... 26 27 28 29 30 31 32 33 34 ... 107
На этой странице вы можете бесплатно читать книгу Расшифрованная жизнь. Мой геном, моя жизнь - Крейг Вентер бесплатно.
Похожие на Расшифрованная жизнь. Мой геном, моя жизнь - Крейг Вентер книги

Оставить комментарий